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In the general framework of conduction models for monocrystalline and polycrystalline 
metal films, analytical expressions are derived for the electrical conductivity of 
semi-metal films. The existence of two cumulative size effects is thus predicted. These 
new equations agree with those previously derived in a special case of energy dependence 
of the relaxation time. 

1. Introduction 
General theoretical expressions for the electrical 
conductivity of thin metal films have been pro- 
posed by Ziman [1]; in the case of semi-metal 
films the Taylor expansion [2] of the energy 
dependence term in the integral expression of the 
current density gives rise to an additional term 
which depends on the square power of tempera- 
ture [1 ]. 

The purpose of this paper is to present an 
analytical relationship between the usual con- 
duction term (which does not explicitly depend on 
temperature) and the extra temperature dependent 
term. 

2. General theoretical expression for thin 
metal electrical conductivity 

In pure metal films three types of electronic 
scatterings can be operating simultaneously: back- 
ground scattering, scattering at grain boundaries 
and scattering at external surfaces. Several 
analytical studies have been proposed [3 -9 ] ,  to 
describe completely the electronic conduction in 
polycrystalline or monocrystalline films. Linear- 
ized analytical expressions have also been empiri- 
cally [3, 10,-16] and theoretically [7, 17, 18] 
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proposed. The ratio of film conductivity, o~ n, to 
bulk conductivity, cry, can be expressed by a 
relationship of the following general form 

or ~ F(Xo,a,D, {~'}), (1) 

where Xo is the electronic mean free path in the 
bulk material, a is the film thickness, D is the aver- 
age grain diameter and ~ is the set of electrical 
parameters defining the effects of roughness at film 
surfaces and at grain boundaries; this set could 
contain, for instance, the usual specular reflection 
coefficient at film surface, p, initially introduced 
by Fuchs [19], but alternative representations 
could also be used [20] ; similarly, the roughness 
of grain boundaries can be represented by the 
so-called electronic reflection at grain boundary, 
mathematically defined by Mayadas and Shatzkes 
[3] ; a statistical electronic transmission coefficient 
could also be used [6-8,  21]. 

3. Electrical conductivity of thin 
semi-metal films 

If the effects of electronic scatterings can be 
analytically represented by a relaxation time, r, 
which is dearly the case for most of the con- 
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duction models [3, 4, 7, 8] when the assumptions 
of Cottey [22] hold, the general macroscopic 
transport coefficients of Ziman [23] can be ex- 
pressed from r [1]. 

For instance, the electrical conductivity is given 
by [1] 

e 2 
Of - -  X 

127r3h 

(rrBT) 5 
~2 uTdZ] E=EF 

~E 5 f 

(2) 

where 27rh is Planck's constant, v is the electron 
velocity, B is Boltzmann's constant, T is the tem- 
perature in K, E is the electron energy, Es is the 
Fermi energy, A is the area of the Fermi surface 
and e is the electronic charge. 

In the case of semi-metals Equation 1 is even 
valid if the conductivity is measured at low tem- 
perature and if any electrical parameter is obtained 
by averaging the parameters related to electrons 
and holes, respectively. This theoretical assump- 
tion is sustained by recent experimental data 
related to antimony films [24], which have been 
theoretically interpreted by equations derived 
from the Mayadas-Shatzkes (M-S) model [3] in a 
special case of energy dependence for r (see Equa- 
tion 4 in [24]). 

If we assume that the only energy dependence 
to be retained is that of Xo, Equation 2 can be 
rewritten as follows 

of QrBT) 2 8 z 
- -  = F(Xo)  + ao 6XoEF 0E~- [XoEFF(Xo)]. 

(3) 
The bulk mean free path, Xo, is defined [25] from 

Xo = ro (Ev )vv ,  (4) 

where ro is the relaxation time due to background 
scattering and vr is the electron velocity at the 
Fermi surface. For convenience we put 

to (E)  = rbE ~, (5) 

where rb does not depend on energy. Equation 3 
consequently goes to the form 

of (nBT)  5 
--Oo = F ( X o ) +  6E~ x 

(s + ~)(s + �89 + + OF(Xo) (2s 3)EF 

~ZF(Xo)] 
+E~- oe~- ]" (6) 

Further, taking into account Equations 4 and 5 
gives 

and 

In F(Xo) 0 in F(Xo) 
- (s + �89 (7)  

~1 in EF ;) In Xo 

02 l n F ( X o )  _ (s + �89 02 lnF(Xo) 
(lnEF) 5 ~3 (lnho) 2 . (8) 

Hence Equation 6 yields 

of _ F(Xo)(1 + { (zrBT~ 5 
~o ~ EF ] 

(s 

+(s+b5 F(Xo)] 2 
~lnXo ] 

+ (s + b 5 ~ ln r (x~  
 x77 J/ 

in F(Xo) 
+ ~)(s + ~ ) +  2(s + 1)(s + - ~)~ 

in ?,o 

(9) 

Taking the derivative of Equation 1 with respect 
to temperature, T gives 

/3f,~u = 1 + ~ lnF(Xo) (10) 
/3g~ 0 In Xo ' 

where /3m f,u is the temperature coefficient of 
resistivity, tcr, of unsupported film, at low tem- 
perature, neglecting any thermal variation but in 
Xo, and /30 is the bulk tcr at low temperature. 
Further differentiating Equation 10 yields 

1TI 
1 8 ,,[/3f~ _ 8z lnF(X0) 

(I1) 
/3g 0r  \ ~ - !  0 (in Xoy " 

An alternative form of Equation 9 is 

a_~_~ = F(Xo) {1 + {(rrBTIZx 
Oo \ e~ ! 

(s + {)(s + �89 + 1)(s + ~) 1-- 

+ (s + �89 2 1-- 

/3g' aT \/30 ]J 

In the next section, comments are made on these 
theoretical results. 
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4. Discussion 
4.1. The special case of the M - S  

conduction model 
In the case of the M-S conduction model [3] it 
has recently been assumed [20] that the electronic 
reflection coefficient at grain boundary, R, 
depends on reciprocal Fermi energy; consequently 
the parameter a, defined by [3] 

a = loD-1R(1 - -R)  - 1  (13) 

(where l o -  Xo) exhibits the following energy 
dependence 

a ~ E}  -1/~. (14) 

Equation 6 must then be replaced by 

a._gg= (rrBTl2 
(70 f(s)  + l \ e r  ] 

(s + + + + ~F(s__) ~)(s 1)f(s) (2s 3) EF 
aEv 

a2F(a) ] 
-t- E~ ~ E - 7 - ] '  (15) 

where % is the conductivity of an infinitely thick 
film. The partial derivatives are easily calculated 
from Equation 14, 

= [ (70 \ EF ] (s + ~)(s + �89 

+ 3(s -�89 + 1)s 0f(s) 
as 

+ (s - �89 s ~ a2f(s)  ] ~ ]  (16) 

for s = -- 1/2. The above equation reduces to 

( rrBTi2 a2f(s) o__g_g = f ( s )  + ~ a:" (17) 
% I E F ] as 2 

with, as shown by [3], 

f ( s )  = 1 - - ~ a + 3 s  2 - 3 s  3 l n ( l + s = l ) ( 1 8 )  

and 

S 2 a 2 f ( s )  = 6S  2 + 12s____ 3 q 3 s 3  

as e 1 + s (1 + a) 2 

--18s 3 ln(1 + s- l ) .  (19) 

This result agrees with the previously published 
result, derived from direct calculations, in the 
special case ofs = -- 1/2 (see Equation 6 in [24]). 
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4.2. The three-dimensional conduction 
model [21 ] and the M - S  conduction 
model [3] 

In the framework of the three-dimensional con- 
duction model [21], the grain boundary con- 
ductivity, (Tg, is given by [21] 

(7~g = G(v) = 3 ~ [ v + c 2 1 
(70 2 1 - - c  [ 1 - - c  

+ 

2 

[1  o+c21  (l+lC 
(20) 

with (1t: O = D~ko I In  (21) 

where t is the statistical transmission coefficient at 
the grain boundary [21], independent of electron 
energy. Equation 6 then becomes 

--(Tg -- G(o) + ~ (1rBTI2 x 
(70 \ Er ] 

L 

+ (, + a2a(v)] 
av 2 ] .  (22) 

Since it has been shown [21] that the M-S func- 
tion, f(s) ,  and the three-dimensional function, 
G (v), approximately coincide for 

sv = 1 (23) 

one could compare Equations 17 and 24 derived 
from Equation 22 by putting s = -- 1/2 

(Tg = G(v) (24) 
(70 

Since [21] 

G(o) ~ f ( s ) .  (25) 

An alternative form for Equation 24 is 

Og 
- -  ~ f ( a )  ( 2 6 )  
(7 0 

which differs from Equation 17. 
This is not surprising since Equation 17 has 

been obtained under the assumption of energy 
dependence of the reflection coefficient at grain 
boundary, R, whereas the transmission coefficient, 
t, is independent of energy. Since a non-linear vari- 
ation in og with temperature was observed in anti- 



mony films [24], Equation 24 is not adequate. In 
the framework of the three-dimensional model 
[21] it seems convenient to calculate the conduc- 
tivity of antimony films by introducing 

r(EF) ~ EF 3/2 (27) 

in order that Equation 27 may give the same 
energy dependence of the parameter, u -1 , as the 
parameter a, for s = -- 1/2 (cf. Equation 14). 

For s = -- 3[2, Equation 22 becomes 

O_K 1 32G(u) 
= c ( v ) +  / " B r / 2  v 2 - -  ( 2 8 )  

"a0 6 k E~ ] 3v 2 

which may be rewritten, from Equations 23 and 
25, as 

I 
So "~ f(eO + 6 \ E v ] 2 " 

(29) 

The deviation between Equations 17 and 29 is due 
to the term 

I (rrBTt2 ~f(a) 

with [ 1] 
2a 0f(s)3a = 6 f ( e ) -  1 - - ~  " (30) 

This correcting term generally takes negative 
values, since an accurate approximate expression 
for f ( e )  is 

f (a )  ~ (1 + CI(R) -1 for 0.01 ~< a ~< 10 

(3~) 
with C~ = 1.34. However this correcting term is of 
low magnitude since (~BT)/EF < 1 and only 
qualitative conclusions can be proposed. 

Deschacht et aL [24] observed that the 
reciprocal conductivity a~ ~ of antimony films 
rarely varies with temperature according to 
Equation 17 for a given grain diameter D. How- 
ever it could be noted that an increasing deviation 
from the theoretical low occurs for increasing tem- 
perature, specially for D < 200 nm (see Fig. 2 in 
[24]). Since it was assumed that the relaxation 
time r is a decreasing function of temperature T 
(r ~ T-3/z); it was also the case for a and, conse- 
quently, for the correcting term (with negative 
value) in Equation 29. It can then be predicted that 
an increase in temperature induces an increase in 
o~ ~ , in good qualitative agreement with experi- 
mental data [24]. Nevertheless, this does not give 

a choice for the effect of electron energy on the 
parameter defining the grain boundary, but it 
suggests that the assumptions of energy depen- 
dence of the reflection coefficient R mathe- 
matically defined by Mayadas and Shatzkes [3] 
and of the bulk relaxation time according to 

R 
E~ 1 and r ~ E~z 1/2, (32) 

1 - - R  

respectively, can be replaced in the framework of 
the three-dimensional model only by the assump- 
tion 

r ~ E173/z . (33) 

Moreover, it may be noted that experimental [26] 
and theoretical evidence have been presented for 
sustaining the assumption of negligible thermal 
variation in R (1 - -R)  -1 , that is in correlation with 
negligible effects of  electron energy. The fact that 
adequate descriptions for the thermoelectric 
power of monocrystalline and polycrystalline films 
[27-31] have been derived from the M-S  model 
[3] under the assumption that R ( 1 - - R )  -1 does 
not depend on energy [32, 33] could also sustain 
the above assumption, since the calculated values 
[28-31] of the energy dependence of the bulk 
mean free path, u, defined by 

I d In Xo 
u = d~n~nE IE=E v , .  (34) 

are not markedly different from the theoretical 
one whereas in the opposite assumption of energy 
dependence of R ( 1 - - R )  -1 the apparent value of 
the energy dependence of the bulk mean free path, 
u', would be: u' = ( u -  1). Hence much more 
marked deviations would be obtained, which does 
not seem to generally be the case. However some 
extra effects, such as impurities [25] could play a 
role and then the situation is not so clear [30]. 
Therefore it is realistic to say that the problem still 
remains unsolved. 

4.3. Approximate expressions for ar/ao 
In the case of thin films the tcr ratio m m /3~, u/flo takes 
values less than unity [25] and the thermal 
variations in the tcr ratio are negligible [25]. 
Equation 12 then reduces to 

~ "~ F(Xo)[1 + -~ (rcBT] z 
~o \ ~-  ] 

~rn 
1; f , u ]  (s+., 

(35) 
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Equat ion  35 shows that  the size effect  in the  

electrical conduct iv i ty  of  thin semi-metal  films 

consists o f  two  parts: the first one is the  ordinary 

size effect  and the second one is an extra  size 

effect  te rm which modula tes  the conduct iv i ty  

t e rm specifically due to the  semi-metal  nature o f  

the material ,  i.e. the conduct iv i ty  t e rm which 

depends  on the square power  o f  tempera ture .  

To our knowledge exper imenta l  data related 

to this theoret ical  po in t  has no t  been published up 

to now.  Since the  extra  size ef fec t  te rm acts as a 

correcting t e rm wi th  respect to the ordinary size 

effect ,  it could be wise to pe r fo rm exper iments  

specially for this purpose,  for instance at high 

tempera ture ;  this aspect will be considered in the 

future.  

5. Conclusion 
The general theoret ical  expressions derived for the 

electrical conduct iv i ty  o f  polycrystal l ine and 

monocrys ta l l ine  semi-metal  films predict  that  two 

size effects  are s imultaneously operat ive;  the  

ordinary size effect  which effects the  ordinary 

conduct iv i ty  (i.e. conduct iv i ty  at low tempera ture)  

and two cumulat ive size effects which affect  the 

conduct iv i ty  te rm typical  o f  semi-metal films. 

In the f ramework of  the Mayadas -Sha t zkes  

conduct ion  mode l  [3] ,  these theoret ical  equat ions  

take forms which agree wi th  previous theoret ica l  

calculat ions [24] .  
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